
IE 601: Optimization Theory
Spring 2022

Instructor: Burak Kocuk (burakkocuk@sabanciuniv.edu)

Lecture Hours: Wednesday 14:40–16:30 (FENS L027), Thursday 16:40–17:30 (FENS 2019).

Office Hours: Wednesday 9:00–10:00 (FENS 2095) or by appointment.

Pre-requisite: IE 501.

Catalog
Description:

Convex optimization and functional analysis; theory of duality; iterative methods
and convergence proofs; interior point methods for linear programming; compu-
tational complexity of mathematical programming problems; extensions of linear
programming.

Course Topics: This course will cover five main topics:

1. Background Material: Basic convex analysis (convex sets, convex func-
tions, regular cones), linear programming (polyhedral representability, duality,
Farkas Lemma), convex programming (duality, optimality conditions).

2. Conic Programming Theory: Duality, tractable conic programs (second-
order cone programming, semidefinite programming), conic representability,
other useful cones (exponential cone, power cone).

3. Conic Programming Applications: Conic programming relaxations of non-
convex optimization problems, applications in robust optimization, portfolio
optimization, power systems optimization, statistics/machine learning.

4. Complexity: Computational complexity of linear programming, interior-point
methods.

5. Advanced Topics: Sum-of-squares/moment relaxations for polynomial opti-
mization problems, copositive programming (if time permits).

Software: A Python-based modeling system for convex optimization called CVXPY will be used
for the examples discussed in class and homework assignments. Please install CVXPY
from https://www.cvxpy.org/.
You are also recommended to install the conic programming solver MOSEK and use
it in conjunction with CVXPY. The details can be found from https://www.cvxpy.

org/install/index.html.

Reference
Books:

Lectures on Modern Convex Optimization, A. Ben-Tal and A. Nemirovski (SIAM).
Convex Optimization, S. Boyd and L. Vandenberghe (Cambridge University Press).
Numerical Optimization, J. Nocedal and S. Wright (Springer Press).
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Grading: Midterm (20%), Final (30%), Homework (30%), Final Project (20%).

Homework: There will be four homework assignments, each featuring some theoretical as well
as computer-based questions. Students are allowed to work together as long as they
submit their own homework and acknowledge who they have worked with.

Exams: There will be two open-notes (closed-homeworks) exams (tentative dates: April
13th, June 13th).

Project: Students are expected to read at least one paper involving a conic programming
application and develop a basic implementation.
Students will submit a report explaining their findings by June 26th.
Students can choose their own topics in consultation with the instructor, or from
the following list:

• Second-order cone/semidefinite programming relaxations.

- Anstreicher, K. M. (2012). On convex relaxations for quadratically constrained quadratic
programming. Mathematical Programming, 136(2), 233-251.

- Burer, S., & Anstreicher, K. M. (2013). Second-order-cone constraints for extended
trust-region subproblems. SIAM Journal on Optimization, 23(1), 432-451.

- Mitchell, J. E., Pang, J. S., & Yu, B. (2014). Convex quadratic relaxations of nonconvex
quadratically constrained quadratic programs. Optimization Methods and Software, 29(1),
120-136.

- Kim, S., & Kojima, M. (2003). Exact solutions of some nonconvex quadratic optimization
problems via SDP and SOCP relaxations. Computational Optimization and Applications,
26(2), 143-154.

• Sparsity exploitation in semidefinite programming.

- Fukuda, M., Kojima, M., Murota, K., & Nakata, K. (2001). Exploiting sparsity in
semidefinite programming via matrix completion I: General framework. SIAM Journal on
Optimization, 11(3), 647-674.

- Waki, H., Kim, S., Kojima, M., & Muramatsu, M. (2006). Sums of squares and semidef-
inite program relaxations for polynomial optimization problems with structured sparsity,
SIAM Journal on Optimization, 17(1), 218-242.

• Scaled diagonally dominant restrictions in semidefinite programming.

- Ahmadi, A. A., & Majumdar, A. (2017). DSOS and SDSOS optimization: more tractable
alternatives to sum of squares and semidefinite optimization. SIAM Journal on Applied
Algebra and Geometry, 3(2), 193-230.

• Applications in discrete optimization.

- Rendl, F., Rinaldi, G., & Wiegele, A. (2010). Solving max-cut to optimality by inter-
secting semidefinite and polyhedral relaxations. Mathematical Programming, 121(2),307.

- De Klerk, E., Pasechnik, D. V., & Sotirov, R. (2008). On semidefinite programming
relaxations of the traveling salesman problem. SIAM Journal on Optimization, 19(4),
1559-1573.
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- De Klerk, E., & Sotirov, R. (2010). Exploiting group symmetry in semidefinite pro-
gramming relaxations of the quadratic assignment problem. Mathematical Programming,
122(2), 225-246.

- Povh, J., & Rendl, F. (2009). Copositive and semidefinite relaxations of the quadratic
assignment problem. Discrete Optimization, 6(3), 231-241.

• Copositive programming relaxations.

- Burer, S. (2015). A gentle, geometric introduction to copositive optimization. Mathe-
matical Programming, 151(1), 89-116.

- Bomze, I. M. (2015). Copositive relaxation beats Lagrangian dual bounds in quadratically
and linearly constrained quadratic optimization problems. SIAM Journal on Optimization,
25(3), 1249-1275.

- Bomze, I. M., Jarre, F., & Rendl, F. (2011). Quadratic factorization heuristics for
copositive programming. Mathematical Programming Computation, 3(1), 37-57.

• Applications in power systems.

- Kocuk, B., Dey, S. S., & Sun, X. A. (2016). Strong SOCP relaxations for the optimal
power flow problem. Operations Research, 64(6), 1177-1196.

- Coffrin, C., Hijazi, H. L., & Van Hentenryck, P. (2016). The QC relaxation: A theoretical
and computational study on optimal power flow. IEEE Transactions on Power Systems,
31(4), 3008-3018.

- Molzahn, D. K., & Hiskens, I. A. (2015). Sparsity-exploiting moment-based relaxations of
the optimal power flow problem. IEEE Transactions on Power Systems, 30(6), 3168-3180.

• Applications in finance.

- Bertsimas, D., Gupta, V., & Paschalidis, I. C. (2012). Inverse optimization: A new
perspective on the Black-Litterman model. Operations Research, 60(6), 1389-1403.

- Zhu, S., & Fukushima, M. (2009). Worst-case conditional value-at-risk with application
to robust portfolio management. Operations Research, 57(5), 1155-1168.

- Ghaoui, L. E., Oks, M., & Oustry, F. (2003). Worst-case value-at-risk and robust portfolio
optimization: A conic programming approach. Operations Research, 51(4), 543-556.

• Applications in statistics/machine learning/signal processing.

- Waldspurger, I., d’Aspremont, A., & Mallat, S. (2015). Phase recovery, maxcut and
complex semidefinite programming. Mathematical Programming, 149(1-2), 47-81.

- Luo, Z. Q., Ma, W. K., So, A. M. C., Ye, Y., & Zhang, S. (2010). Semidefinite relaxation
of quadratic optimization problems. IEEE Signal Processing Magazine, 27(3), 20-34.

- Wang, Z., Zheng, S., Ye, Y., & Boyd, S. (2008). Further relaxations of the semidefinite
programming approach to sensor network localization. SIAM Journal on Optimization,
19(2), 655-673.

- Goldfarb, D., & Yin, W. (2005). Second-order cone programming methods for total
variation-based image restoration. SIAM Journal on Scientific Computing, 27(2),622-645.

- El Ghaoui, L., & Lebret, H. (1997). Robust solutions to least-squares problems with
uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4), 1035-1064.
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